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We construct the Riemann-Cartan geometries with torsion generated by the 
action of the conformal Weyl group. We study the wave operators associated to 
these structures, which, in addition to the usual Laplace-Beltrami operator, have 
a term which is a gradient vector field conjugate to the one-form given by the 
torsion potential derived from the Weyl group, and which we associate with a 
relativistic extension of the drift vector field in Nelson's construction of stochastic 
mechanics. In fact, our construction is valid for configuration spaces of any 
dimension. We sketch the construction of the stochastic processes on space-time 
generated by these operators, where the invariant measure is found to be defined 
by the conformal structure. We discuss briefly the relation with the theory of 
Dirichlet forms and D. Bohm's quantum potential in the theory of hidden vari- 
ables, which in this setting acquire a gauge-geometric status previously unknown. 

INTRODUCTION 

Cartan's legacy in differential geometry comprises more than the con- 
struction of classical mechanics through his theory of integral invariants; 
the general theory of linear connections was formalized by Ehresmann 
(1950), from which the gauge theories later arose. 

It is a theory which comprises a torsion tensor. 
On encountering Einstein, Cartan emphasized that his theory was more 

general than the purely metric theory of Levi-Civita, and proposed an exten- 
sion of Einstein's relativity (Cartan and Einstein, 1979), which is known 
today as the Einstein-Cartan theory (Hehl, 1980). Kibble and Sciama (1962) 
contributed to it in the 1960s, developing a gauge theory of the Lorentz 
group with torsion. Hehl et al. (1976) later associated torsion to a spin 
density, and de Sabbata and Gasperini made a pioneering project of relating 
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torsion to the "internal" symmetries of particle physics, through a nonstatic 
propagating torsion (Hehl, 1980). Independently, the author together with 
Sternberg proved the central role this propagating torsion possesses in a 
gauge approach to the symplectic geometric description of the elementary 
classical relativistic systems with spin, classified by Souriau (1970; also see 
Sternberg and Ungar, 1978; Guillemin and Sternberg, 1984). It was found 
that a relativistic spinless particle moves as if the background field were 
torsionless. 

Unrelated to this, Nelson has derived nonrelativistic quantum mechan- 
ics from the theory of Markov processes, and the subsequent theory, stochas- 
tic mechanics, is conceptually richer than the usual approach to quantum 
phenomena, and has been proposed by Glimm and Jaffe (1987) as an altern- 
ative construction to the program of constructive field theory. 

Yet, in Nelson's theory as well as in the fundamental studies of the 
theory of Markov processes in general manifolds, there is lacking a funda- 
mental geometrical principle from which these theories should naturally 
arise, even though the necessity of the general theory of connections due to 
Cartan plays a fundamental role in the mathematical theory (Ikeda and 
Watanabe, 1981; Elworthy, 1982; Azema and Yor, 1982). 

In this paper we shall provide this unifying geometrical principle, as 
a theory of the gauge conformal Riemann-Cartan structures, with their 
associated wave operators the infinitesimal generators of the Markov pro- 
cesses in space-time. This point of view is original, to our knowledge, and, 
as we shall see, it allows for a most remarkable connection between the 
gravitational field described by a Poincarb gauge theory, stochastic mechan- 
ics, and quantum mechanics as described by the theory of Dirichlet forms. 

To be precise, we shall construct a one-to-one correspondence between 
the conformal-Lorentz (or conformal-orthogonal) gauge theory, the diffu- 
sion processes associated to their wave operators, and the Dirichlet forms 
associated to them. 

Therefore, this principle might provide for a fundamental geometrical 
and gauge perspective which has been lacking in quantum field theory. 

In this paper we shall give a brief presentation of this principle and its 
above-mentioned relations. 

1. THE RIEMANN-CARTAN-WEYL GEOMETRY OF POINCARI~ 
GAUGE THEORY 

We shall assume from now on, unless otherwise stated, that all geometri- 
cal structures are infinitely differentiable, and that space-time M has dimen- 
sion equal to 4. 

The Riemann-Cartan geometry on space-time appears from a reduction 
of the bundle of Poincar6 frames over space-time to that of the Lorentz 
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frames. The fundamental geometrical object is the Cartan soldering form 0, 
a Lorentz [or 0(4)] tensorial Ra-valued one-form on M, which allows for 
smooth identification of TxM, the tangent space at x e M, and the homogene- 
ous space R 4 given by the quotient P/L, where P and L are the Poincar6 
and Lorentz [or 0(4)], respectively. This soldering form together with the 
connection below describe the gravitational field (Cartan and Einstein, 1923 ; 
Rapoport-Campod6nico and Sternberg, 1984a,b; Heyl, 1976). Thus, 0 gives 
a (co)tetrad field 0~, dx ~, with inverse e2 ~/Ox ~ in a coordinate system (x ~) 
of M, where a = 1 . . . . .  4 and a = 0, 1 . . . . .  3 represent the indices of an 
anholonomic basis in R4; thus, 

a c ~  a 0 ~ e b -  ~5~ and O~e~=6~ 

If (gob) denotes a metric on R 4, we can define a metric g on M, by 

__ a b g~-gabO~O~ (1.1) 

which then has the same signature as (g~D- 
If  we have a Lorentz (or orthogonal) linear connection on R 4, F = 

(F~b), then F is skew-symmetric in a, b; we assume F to be metric-compatible. 
From F we can define the space-time linear connection (Hehl et al., 1976) 

F ~ p -  a t ~ b r ~ a  a a - ea  v~Jbu + e ~ u O ~  (1.2) 

which then is also metric-compatible, i.e., if V denotes the exterior covariant 
differential with respect to the linear connection defined by (1.2), then 

V~g~ =0  (1.3) 

Thus, lengths of vector fields are preserved under parallel transport. This 
means that 0 has reduced the bundle of linear frames to the orthogonal 
bundle (this is of great importance in assuring the strong Markov property 
for the stochastic processes we shall construct below; yet we shall not make 
this property explicit here). 

What is essential to the connection on M defined by (1.3) is its nonsym- 
metric character, i.e., it has a nonzero torsion tensor 

a I a 
T~v = ~(F~v - Fv~) (1.4) 

This geometry is called the Riemann-Cartan (RC) structure. 
Let us introduce a conformal structure on the tangent space of M. 
We define the Weyl transformation on the soldering form by 

W( O~ )= ~O~ (1.5a) 
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so that W(eX)-  - (1/~t)e . ,  and a Weyl transformation on F (which by abuse 
of notation we denote by Was well as for the other derived transformations) 

W ( r ~ )  = r ~  (1.5b) 

then we can derive the following transformation on the metric on M: 

W(g~p) = ~2ga fl and W(g ~z) = gt-2g ~z (1.6) 

These are the well-known conformal transformations of the metric on M 
(Fulton et al., 1962). In the above definitions, gt is a function defined on M 
with values on N +, which initially we shall take to be smooth on any open 
neighborhood not containing the "node set of gt" defined by 

which is closed. 
The Riemann-Cartan 

becomes 

with torsion tensor 

{xeM/~,(x) = O} 

structure under the above transformations 

ct  _ _  t~ W(F~u) - Fpu + 5~8, In ~r (1.7) 

a ] a 

Tz,  + ~(5Z8 , In ~t - 5~8 z In ~t) (1.8) 

This shows that only the trace of the torsion tensor is conformally trans- 
formed, i.e., the 1-form Q = Qu dx~ = T~u dx ~ of the original connection is 
transformed as W(Q) = Q+3/2dln ~t. 

The fact that is to be remarked is that one could in principle start with 
a torsionless and flat connection, say, such a F, with (0~)= (5~,) and g =  
diag(:kl, 1, 1, 1); and through a choice of conformal tetrads (1.5a), we 
henceforth introduce an RC structure. It is important to notice that this also 
introduces a metric-compatible connection. It is given by (we normalize the 
3 

factor) 
"~ 6t 

F ~  = {~}  + ~(5~8~ In gt-gp~g~Cy In ~) (1.9) 

where { ~ } are the coefficients of the Levi-Civita connection associated to 
the metric defined by (1.1). Then, Q = d In gt, the logarithmic differential of 
the scale field q/, is a Weyl one-form of an RC metric-compatible structure. 

This distinguishes these RC structures, produced by the general action 
of the conformal group, from the usual Weyl geometry produced by the 
transformations on the space-time metric (1.6). In the latter, it is the Weyl 
one-form which precisely expresses the lack of preservation of lengths under 
parallel Weyl transport (Fulton et al., 1962). So the introduction of these 
structures solves a long pending problem of compatibility of the RC 
structures with the local action of the Weyl group (see, e.g., Katanaev and 
Volovich, 1990). 
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Therefore, this geometry, which we shall call Riemann-Cartan-Weyl 
(RCW), has n o  h i s t o r i c i t y  p r o b l e m ,  which moved Einstein to reject Weyl's 
attempt to construct the first gauge theory in which he associated the Weyl 
form to the electromagnetic field, this in spite of Q not being a complex field 
(yet, a nonobvious association). 

We remark that our above constructions can be carried out for the case 
of a general configuration space M of dimension n, on taking instead of the 
Poincar6 group, the group given by the semidirect sum O ( n ) +  Rn .  

As we already claimed, we intend to construct an extension of stochastic 
mechanics (Nelson, 1985). For this we need to characterize the infinitesimal 
generators of the stochastic processes, which we later relate to the Dirichlet 
operators of quantum mechanics (Blanchard e t  a l . ,  1987). 

We shall study, then, the wave operator associated to the RC structures. 
Henceforth, in this section the dimension of M will be arbitrary n. Let 

co be an arbitrary p-form on M. Locally 

c o =  l / p !  co~, . . .~  d x ~ '  A . . . A /x d x  ~" 

Then, 

= 1 / (p+  1)! (Vs ~, Vco 
\ 

- i v  oo. ,x~ 
k = l  

is a ( p +  1)-form, which can be uniquely decomposed as Vgco +dcco, where 
Vg denotes the covariant derivative with respect to the Levi-Civita connection 
associated to g, so that 

Vgco = 1 / ( p  + 1)! (8~co~,~... ~ , -  8~,co~2... ~, - 8~co~... ~,, 

. . . . .  8~ , ,co~, . . .~ ,_ ,~)  d x  ~ A d x a l  A " " " A d x  % 

and 

d c c o = 2 / ( p +  l ) !  P COal "'" am-~13a.,+l"" apT ya,,, 
1 

... T ~ ) d x ~  /x d x ~ '  /x . . . /x d x ~ ,  , -~ 0 ~ 1  at-II~Clt+l"'ak 17ak+l'"ap Cgt~k 
t<k  

The covariant codifferential 8o  of co is a ( p -  1)-form given by 

dxa,~ 8 c o = - 1 / ( p +  1)!gt~V~co~2...,~,, A .  �9 �9 A d x  ~'p 

The covariant codifferential of a function is defined to be zero. 
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We define the wave ope ra to r  A p of  the R C  structure as 

~c~ 8 V + V ~  (1.10) 

Hence,  if ~b denotes  a funct ion on M, ~(q~ ) = 8Vq~, which can still be writ ten 
as ~(~b ) : 6 d~b. 

can be defined f rom *, the (extension) o f  the duality Hodge  opera to r  

. I 

rico = (--1) p V'CO (1.11) 

[,  - I  = (__l)p(n-p) ,] ,  where 

*co = 1 / ( n - p ) !  e ~ , ~ . . . ~ . _ ~ r  ~ ' p ~  (1.12) 

with e~ ... ~. being the covar ian t  componen t s  o f  the unit  tensor  field and 

Qp, .../~ = j ,  ~ , g / 3 ~ . . .  g~o~co 7,.. r~ (1.13) 

are the componen t s  o f  the conjugate  tensor  field Q of  co. Fo r  example,  if 
7c = ~r~ d x  ~' is an a rb i t ra ry  one- form,  its conjugate  vector  field is rr~O~, with 
~r ~ = J r Tr r. 

Let us take now the ( n -  1)-form dual  to the 1-form ~r, 

co = * J r =  1 / ( n -  1)! co~,~2...~~ dx'~' /x" " " A d x " "  ' 

where 

O)ala2. . ,~n_l=eala2, . .an i~n~ ;'1 

Apply ing  the covar ian t  differential ope ra to r  V, we obta in  

%(-0 = ( -1 )" -10~( [de t  g[V2rc ~) A d x l A  " " " A d x  n 

and 

dcco = ( -  1) ' -~2[det  gll/2~v ~ T ~  d x  j A" ' �9 A dx"  

= ( - 1 ) n - ~ 2 l d e t  g l l / 2g (~ ,  ~ )  d x  ~ i x . . .  A d x "  

where g and ~) denote  the vector  fields conjugate  to the 1-forms ~r and Q = 
T ~  d x  p, respectively. Therefore ,  

Vco = - ( c~ ( Ide t  gl) ' /e;r ~) + 2[det g l ' / 2 g ( ~ ,  Q.)) dx~ A .  �9 �9 dx", 
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Thus, the generalized divergence Div(rc) of lr is a scalar form given by 

Div rc = [det gL- 1/2ct~([ det g[ I/2rc~) + 2g(r~, Q) 

Finally, the generalized Laplacian of a function q~ is given by the invari- 
ant expression 

~(~b ) = - D i v  d~=-(tdetgl  -'/2 O~(Idet gl~/z0a~b )+2g(d~, 0)) (1.14) 

We note that only the torsion-trace one-form is involved in the second term, 
while the first one is nothing else than the usual Laplace-Beltrami operator 
Ag associated to the space-time metric applied to q~. One can write 5r ) in 
the simpler form 

~(~b ) = - ( A g +  2QY0r)(~b ) (1.15) 

The torsion-trace 1-form need not be exact. Yet, on assuming this exact- 
ness, say Q = d l n  g, for some nonnegative function ~v on M, then (1.15) is 
the expression for the wave operator of a Riemann-Cartan-Weyl defined 
by the choice of a conformal element V. This is 

s ) = - [ A g + 2 U ( l n  V)0r](~b ) (1.16) 

where we have written Y as A% to stress its dependence in the conformal 
element ~ defining the RCW structure. 

Therefore, the wave operator for the RCW structures has, in additional 
to the usual propagation term, a coupling term which is a first-order operator 
given by the conjugate of twice the Cartan-Weyl form d In V 2. 

Yet, in quantum physics, to define correctly the ground state of a system 
under consideration, one is interested in Hamiltonian operators given by 
one-half the Laplacian (the heat operator), so we shall focus our attention 
on the operator 

H v = -  �89 A~ = ~ Ag+U(ln V)8~ (1.17) 

This natural renormalization will turn to be of fundamental importance 
in the sequel, for the construction of a relativistic extension of stochastic 
mechanics. 

2. THE STOCHASTIC PROCESSES ASSOCIATED TO THE 
R I E M A N N - C A R T A N - W E Y L  GEOMETRIES 

In Nelson's (1967, 1985) classical work on the construction of quantum 
mechanics from the theory of stochastic processes, specifically, the Markov 
processes, wave mechanics is constructed in terms of measures in the space 
of paths on configuration space, in principle R 3 or a three-dimensional space 
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manifold provided with a Levi-Civita connection. Still, it considers the con- 
figuration space for a system of nonrelativistic particles. So, in principle, it 
is a nonrelativistic theory, in which time is associated to the evolution param- 
eter of the quantum system. The system itself is described by a Markov 
diffusion process ~ = ~(t), t e~ ,  which is constructed from the assumptions 
of an initial probability density for 4, and the infinitesimal generator of  the 
process, a second-order differential operator described by a Hamiltonian 

I 
of the form H =  sAg + b, where b is a first-order differential operator with 
coefficients which depend on both the space and time coordinates. In the 
theory of stochastic processes, the Laplace-Beltrami operator is the gener- 
ator of the inherently stochastic character of the process (if b-=-= 0, it is a 
process described by the well-known Wiener measure) and b is the drift or 
velocity vector field, thought of as a classical contribution to the dynamics 
of the system, perturbed by the stochastic term. In Nelson's theory, b is 
unrelated to any geometrical structure, and it is assumed separately for gener- 
ation of the process. More precisely, one has to solve for the drift in solving 
for a scalar field satisfying Schr6dinger's equation, thus turning a nonlinear 
theory of diffusion (the Fokker-Planck equations) into a linear one. Thus, 
it is fundamental for his construction of the wave functions, essentially the 
above conformal factors, that the drift vector field be assumed gradient-like 

�9 (Blanchard et al., 1987). 
All further developments of stochastic mechanics (SM)--Aldrovandi et 

al.'s (1990) and Albeverio and HOegh-Krohn's (1979) program of construc- 
tive quantum field theory--carry this imprint. 

At this stage of our presentation, it seems natural to pause to reflect on 
the fact that in our construction of the RCW structures we have a conceptu- 
ally richer structure than the usual one contained in the known construction 
of SM. 

Indeed, if we take for infinitesimal generators of  the stochastic processes 
the Hamiltonian operators H~, constructed from the wave operators of the 
RCW structures, we have: first, Minkowski or Euclidean time is incorpor- 
ated into the configuration space, and a priori should not be confused with 
the evolution parameter of the stochastic processes {which we shall denote 
from now on as r, with v~[0, oc); this proper-time parameter should be 
thought of as a Kaluza-Klein (n + 1)-coordinate} ; second, we are in a posi- 
tion to describe a relativistic system of particles, as our construction allows 
us to deal with arbitrary dimensions; finally, if we look for a (we remark) 
v-stationary measure on the paths of the diffusion, we shall see that the 
statistical description of the theory becomes purely geometrical. 

To start with, by construction of the RCW structures, the drift is of 
gradient type�9 

Certainly, b coincides with the conjugate vector field to d In gt. There is 
no accident to this remarkably perfect matching. 
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The key idea of construction of SM is that of parallel transport of a 
diffusion process, so the question of the linear connection to describe this 
parallel transport is the central issue. The choice of a Levi-Civita connection 
not only is of negative character (a torsionless Connection), but also chooses 
a preferred system of coordinates, the so-called normal coordinates, for which 
a well-known theorem of differential geometry assures that a general linear 
connection reduces to a Levi-Civita one. In other words, this special type of 
parallel transport conflicts with the principle of relativity. So, whatever one 
has to define as a parallel transport, be this along an a.s. continuous but 
nowhere differentiable path as in Brownian motion, or along a smooth path 
as in differential geometry, it appears that the RCW structures will precisely 
be the natural ones defining the required law of parallel transport. What one 
needs is to take into account the locally infinite variation of the paths of 
Brownian motion, i.e., a specific set of rules of calculation which will do the 
job of the usual differential calculus on manifolds. This is the so-called Ito 
stochastic calculus (Ikeda and Watanabe, 1981; Williams, 1981), which we 
shall omit due to limitations of space. 

The stochastic processes we shall build constitute a class characterized 
by both the Markov property and the continuity of its paths in M; they are 
usually called diffusion processes. We shall give a formal (but incomplete) 
description of them. A more complete formal treatment of some of its aspects 
can be extracted from Meyer and Zheng (1985) and a forthcoming paper 
by the author. 

Let M be topological space (one usually takes the one-point compact- 
ification on aggregating a terminal point at infinity on which the diffusion 
falls if it explodes, but for brevity, we shall not make explicit this possibility). 
Let ~#r(M) be the set of all continuous functions w: ~ --, M. A Borel cylinder 
set in ~r is defined for a sequence of positive real numbers 
r~<r2<" " ' < r n  and a Borel subset A in M " = M x  . . .  x M  n times as 
rc~,l... ~~ ), where rc~ ....... (w)=(w(rl)  . . . .  , w(rn)). We recall that a Borel 
subset in M is any set in the smallest o--field containing all open sets. Let 
(9(~#~(M)) be the o--field generated by all cylinder sets, and let ~(~/U(M)) 
be the o--field generated by all cylinder sets up to time r. A family of prob- 
abilities {Px, x e M }  on { f ' ( M ) ,  ~(~W(M)) is called a Markovian system if 
it satisfies the following conditions: 

(i) P~{w: we'IU(M), w(O) =x} = 1, VxeM. 
(ii) M~x  ~ Px(A) is Borel measurable, for each A s~(~C/~(M)). 

(iii) Vr>_s, AEM,('Cr and F a Borel subset in M, 

Px(A r~ {w" w(r )e r}  )=  j~ Pw,(,){w: w(r-s)er}P~(dw') ,  V x e M  

We set P(r,  x, F) =P,{w: w(r)eF}. The family {P(r, x, F)} is called 
the transition probability of a Markovian system. By successive application 
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of (iii) we get 

Px[w(rOeA~,..., w(rn)eA,] 

=;o t'(r,,x, dx,)x ;A P(r2-rl,x,,dx2) 
I n 

x ' ' ' x f A  P(r,-rn- l ,xn- l ,dx,)  
n 

for 0 <  rz <" �9 " < r , ,  and A~ . . . . .  An~(M) ,  so we can see that two Mark- 
ovian systems defined on M with the same transition probability coincide. 

A stochastic process ~ = ( ~ ( r ) )  on M, i.e., a ~K(M)-valued random 
variable [i.e., for fixed r_>0, the map ~ ( M ) ~ w  ~ ~(r)(w)=~(r, w) is a 
random variable with values in M],  where (~K(M), ~(~r p))  is a prob- 
ability space with a probability measure P, is called a diffusion process, if 
there exists a Markovian system {Px, xeM} on (~K(M), ~( ' / r  such 
that, for ahnost all co, the sample paths [r --, ~(r)] e ~K(M) and the probabil- 
ity law on ~ ( M )  (i.e., the image measure) of  [r ~ ~(r)] coincide with 
P e ( ' ) M = ~ P ~ ( " )  p(dx),  where p is the Borel measure on M defined by 
tl(dx)=P{w: ~(0, w)edx}. 

We shall say that the operator H is the infinitesimal generator of  a 
diffusion process ~ = (~ ( r ) )  (or that {Px, x~M} is determined by H )  if the 
stochastic derivative Df of  any twice differentiable bounded function with 
bounded derivatives f on M satisfies the condition 

Df( ~(r)) = lim 1/h Er ~(r + h)) - f (  ~(~'))) = (Hf)( ~(r)) (2.1) 
h ~ O  + 

where E ~ )  denotes the expected value with respect to Pr 
We are interested in M being space-time or a configuration space of 

arbitrary dimension n, and the diffusion processes defined by the infinitesimal 
generators given by H = Hv = -  ~ v ,  which we can locally write as 

1 ~afl~2 H =  2- ,~+~3~ In ~ 6~ (2.2) 

Let o- = (cr~) be a square root of Ag, i.e., x --, ~(x) is continuous and 
_ ~ p _ r 6  This is a coordi- the coefficients a~(x), xeM, are given by a ~p = u ru 6  ~ . 

hate-dependent construction and nonunique; this will not affect the unicity 
of  the diffusion (Friedlin, 1985). 

If g is constant, so that the drift is zero, then the diffusion ~ is standard 
Brownian motion with Px = W~, the Wiener measure on M starting at x and 
initial distribution/.t (dx). 

Thus, in the general case we might expect a departure of the Gaussian 
measures one usually encounters in quantum field theory, produced by gt. 
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We now consider the following (homogeneous in proper time r) stoch- 
astic differential equation for ~ = (~(r))  : 

d~(z)=(r~(~(r))dB~(z)+b~(~(r))dz, a = l  . . . . .  n (2.3) 

where dB=(dB~) denotes a Brownian motion on M, so that 
E~(~)(dB~(r))=O, and the covariance satisfies E~(~)(dB~('c) �9 dB~(v)) = 
g~t~ dr. 

It is a theorem (Ikeda and Watanabe, 1981), in the case that A~ is an 
elliptic operator, so that g is a Riemannian metric (which we can think of 
as providing a Euclidean structure on TM), and o- and b are continuous 
and Lipschitz bounded on M, that for every x~M there exists a unique 
solution of (2.3) such that 4(0)= x, and the probability law on ~g~(M) of 
the diffusion ~ is determined by H. The probability law of 4(0) coincides 
with p, i.e., P{ ~(0)e A } =/1 (A), where/1 is the given probability measure on 
M. The condition on the metric can be relaxed to g being nonnegative 
definite (still not including the hyperbolic case) (Friedlin, 1985). Due to the 
zeros of ~,', b will be singular, yet the unicity of the diffusion can be con- 
structed by assuming b to be locally bounded (Friedlin, 1985; Carlen, 1984; 
Durrett, 1984). We shall make this precise below. 

Thus, we have, in principle, a one-to-one correspondence between the 
RCW structures and the diffusion processes generated by Hv,. 

Let {P~: x e M} be the diffusion process determined by H. The transition 
semigroup T~ of the diffusion generated by H is defined by 

(T~f )(x) = E~(f( ~(r))) = f Mf( ~(r)) P~(dw) (2.4) 

f o r f a  bounded, continuous function with continuous bounded derivatives. 
The function u=u(r, x)=E~(f(~(r))) is the unique solution of the heat 
equation 

8u 
- H u  (2.5) 

8r 

with initial condition given by lim~0.y~x u(r, y)=f(x). It can be proved 
that T~ and H commute : T~H= HT~, so that we can write T~ = e ~ ,  which, 
due to the Markov property of the diffusion, yields a semigroup of 
operators: T~+~,= T~T~.. 

If  H =  H v, = -  �89 ogav, we obtain a family of semigroups of"Schr6dinger" 
operators associated to the RCW structures defined by the choice of the 
conformal class defined by qt. 

In quantum physics, in the functional integral point of view, one is 
interested in the transition semigroups defined by infinitesimal generators of 
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1 
the form EAg + V, where V denotes a multiplication operator by a potential 
function, which one expresses through a Feynman-Kac formula. 

In fact, the theory of diffusion processes assures that the potential 
perturbative factor can be assimilated to the diffusion process defined by 

1 
sAg, as an exponential factor in the path-integral representation of the 
Schr6dinger operator in terms of the Wiener measure (Glimm and Jaffe, 
1987; Durrett, 1984). 

There is a similar path-integral representation in the case of the general 
diffusion processes defined by the RCW structures. This is done through 
the so-called Girsanov-Martin-Cameron transformation; we shall present it 
below. 

Returning to the problem of construction of the diffusion processes, we 
shall say that a Borel measure p (dx) on M is an invariant measure by the 
diffusion process defined by H, if, for r_>0 and f bounded continuous 
on M, 

f (T~f)(x) p(dx) = ff(x) p(dx) (2.6) 

The diffusion {Px, xeM} will be called symmetrizable if there exists a Borel 
measure v(dx) on M such that for any f, g bounded continuous on M 

f(T~f)(x)g(x) v(dx)=ff(x)(T~g)(x) v(dx) (2.7) 

It is easy to see that the measure for which the diffusion process is 
symmetrizable is invariant. 

It can be proved that p (dx) is invariant for the process generated by H 
if and only if 

f (Hf )(x) ~ (dx) = o ( 2 . 8 )  

for every smooth function of compact support f on M. 
We define an inner product on the smooth functions of compact support 

on M by 

(f,g)=ff(x)g(x)dx (2.9) 

where dx is the Riemannian volume element, so that dx= [det gl 1/2 dax. By 
integration by parts we get that (Hf, h) = (f, H'h),  where H* is the adjoint 
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operator of H, so that 

H*h = �89 . dln  Vt) (2.10) 

We can restate the condition for invariance of the measure/~ in terms 
of H*. Indeed, (2.10) is equivalent to p being a weak solution (in the sense 
of the theory of generalized functions) of the partial differential equation 
H*p = O. 

Assuming that Ag is an elliptic operator, then H and in consequence H* 
are elliptic, too, and in consequence any solution of the equation H*v = 0 is 
of the form p -- r  dx, for q~ a smooth function vanishing on the zeros of 
~. In fact, q~ is precisely an eigenfunction corresponding to the largest eigen- 
value A--0 of the eigenvalue problem ( H * - ~ ) r  it is simple and its 
associated eigenspace is of the form {eel(x), c ~  + }, and in consequence 
all invariant measures for H are of the form p = (c~b~') dx, for some con- 
stant c > 0. 

Let us determine p precisely in the case of H =  H v. Choose a smooth 
function U(x) on M such that p = e-Udx is an invariant measure for H, 
i.e., H*(e-  u) = 0. Since H*(e-  u) = _ �89 figd(e- u) + fig(e- t:d In Vt), where fig 
denotes the codifferential of Vg, therefore �89 u+ e-  Ud in ~t = 0, and U= 
- l n  ~2. 

Therefore, we have proved that ~2 dx gives an invariant density for the 
diffusion processes generated by (-�89 The square of  the conformal factor 
together with the Riemannian volume element determine a unique invariant 
density for the R C W  diffusion processes, apart from the node set o f  
{x~M:  ~t(x)= 0}. In fact, it can be proved that the diffusion is symmetriz- 
able with respect to this invariant density. 

Due to the origin of V/as a local ~ +-symmetry, these singularities do 
exist. It is a theorem due to Nelson (1985) that the diffusion process does 
not penetrate the node set, which can then be thought of  as a barrier for the 
diffusion process, i.e., the probability of penetration of the node set by the 
diffusion is nil. For a proof of this in terms of capacities in the theory of 
Dirichlet forms see Blanchard et al. (1987). 

These barriers have a natural interpretation. They are associated to a 
very general phenomenon of charge quantization, which can easily be 
described in terms of  the principle of" the argument in the theory of  complex 
variables. It is interesting also to remark that these nodes can be described 
in terms of Thorn's theory of catastrophes. We shall give a description of 
these facts elsewhere. For an interesting list of examples of these barriers, 
see Blanchard et al. (1987). 

Let us assume that ~ belongs to the Hilbert space LZ(Nx) of square- 
integrable functions on M with respect to dx. Let p dx be the invariant 
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probability density defined by C~//2 dx, where C-~ = I,//2 dx. The semigroup 
exp(rHv,) can be defined on L2(p dx) by 

(exp(v. Hv)f  )(x) = Er = f f (x )p(x )  dx 

for any r>0 ,  where ~(r) is a solution of (2.3). In fact, the infinitesimal 
generator of the semigroup is defined on all smooth, compact, supported 
functions which are zero on a neighborhood of the zeros of ~', so that it is 
the Friedrichs self-adjoint extension of H~,, which we shall still denote by 
H~,; the quadratic form on LZ(p dx) with respect to which this extension is 
defined is the one associated to the bilinear symmetric form given by (minus) 
the so-called Dirichlet form (Carmona, 1979) 

f - g(af, E ) p  dx (2.11) 

f and f smooth functions on M, with compact support on the complement 
of N. 

Let us make this more precise. Since geL2(dx), the operator multiplica- 
tion by 9' is densely defined and self-adjoint, with domain L2(p dx). We 
define the conformal dependent unitary map 

with inverse 

Cv: L2(pdx) --+ ~L2(dx), ~b--+ ~p  (2.12) 

C~': ~L2(dx) ~ L2(pdx), f -~ ~t-lf 

Note that ~L2(p dx) = { igf ; f e L2(p dx) } ~_ L2(dx), and the contention 
is equality if and only if the node set of 9, has Lebesgue measure equal to 
zero, i.e., ~ > 0 dx-almost everywhere. 

Let ~ be the open set given by the complement of the node set N. For 
f and jTe C~(~ ) (where from now on the subscript 0 stands for compact 
support) consider the symmetric bilinear form 

e(fl,, f )  = - ~ ~g(df, dy)p dx (2.13) 
.J 

This is a local Markovian symmetric form (Fukushima, 1980). Let 
~p(f*) be the closed subspace of L2(p dx) obtained by closing C2(~ ) in the 
L2(p dx) norm. 

Let us assume that--we shall give explicit conditions for this below-- 
the restriction of V/ to ff~ is such that the quadratic form q0 c) = e ( f , f )  is 
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closable in Jfp(dx): 

if q(fn--fm) ' 0 and (f,,f,)L2(pa~) ' 0, then q0C,) ~ 0 
n , m ~ o ~  n ~ o o  n ~ o o  

for any {f,,  n~ r~} in ovfp(f~). Then, between all the closed extensions of e 
(the Dirichlet forms), we can take the smallest closed extension (the 
Friedrichs form) ~, with associated quadratic form ~, defined by 

,f ~(f, aT) = _ ~ g(df, df)pdx (2.14) 

where now d denotes the operator closure in 5(fp(~) of the restriction of the 
exterior differential to C~(dx), where the exterior differential is thought of 
as an operator taking functions in LZ(p dx) into 1-forms with coefficients in 
L2(p dx). 

It is a fundamental theorem of the theory of Dirichlet forms (Fukush- 
ima, 1980) that there is one-to-one correspondence between the family of 
closed symmetric forms on L2(p dx) and the family of nonnegative-definite 
self-adjoint operators Hp on L2(p dx). We are particularly interested in the 
Friedrichs self-adjoint extension defined by the choice of domain given by 
Hp(~) ,  so that lip is determined uniquely by 

g(f, jT) = (Hpf, f)~n) (2.15) 

with domains of g and of Hp equal to a~'p(f2). 
If  ~ is such that d ln  ~EL2oc(O), then on C2(~ ) we find that Hp equals 

Hv, given by (1.17), i.e., there is a one-to-one correspondence between the 
smallest closed extensions ~ defined by (2.14) and the Friedrichs extensions 
of the RCW wave operators (so, in the following, we shall denote them 
indistinguishably by H~). 

Let us explore further the relation between the Dirichlet forms and 
the RCW wave operators. This will yield a most remarkable one-to-one 
correspondence between the RCW structures and quantum mechanics as a 
theory of quadratic forms (Simon, 1971). 

Due to the conformal unitary equivalence between LZ(p dx) and 
gL2(p dx), to the closed subspace ~ p ( ~ )  of LZ(p dx) there corresponds 
a closed subspace of Vtd(fp(~ )c_L2(dx), and to H v, there corresponds a 
Hamiltonian operator D v defined on VtJfp(~ ) by Dv := CvHv, C ~ i. 

If we assume that Ag~//~L2oc(~'~), then the operator Vv,=Ag~/~ is 
densely defined in L:(~, dx). For f i n  C02(f* ) we have 

O~,(vf ) = Cv,(Hv,f ) = �89 Vv)vf (2.16) 

i.e., on vC02(fl) we have D r =  ~(Ag-Vv); we recognize V v, as the well- 
known quantum potential in Bohm's (1952) theory of hidden variables, 
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which is essential also in stochastic mechanics, as we shall see below (Nelson, 
1985; Blanchard et al., 1987). 

It is clear that Vt, as a generalized function, is the ground state of the 
operator Dr,, which we have called Hamiltonian, as it possesses the usual 
decomposition into kinetic plus potential terms. We remark that in the 
context of the above formulation, the quantum potential V v appears as a 
conformal transformation inside of the Dirichlet form of both the torsion- 
potential drift and of the ground-state invariant density of g defined by ~2 dx 
to the Riemannian density. 

If, additionally, the generalized 1-forms d~, d In ~,, and the generalized 
Ag ~/~t function all belong to L2oc(~), then D~, is still defined as in (2.16) 
on C2(~ ) u (~C02(f])) as well as H~, (Albeverio et al., 1977). 

We can summarize the above considerations in the following theorem: 
There are one-to-one correspondences between the RCW structures, their 
Friedrichs self-adjoint wave operators, the diffusion processes determined 
by them, the Friedrichs self-adjoint Dirichlet forms, and the Hamiltonian 
operators defined as sums of quadratic forms. This is regardless of 
dimension. 

This is a most remarkable connection between the structures underlying 
the conformal gauge theory of gravitation and quantum mechanics. 

To complete our construction of the diffusion processes, we must give 
the transition density p ~(x, y) with respect to the Lebesgue measure, so that 
exp(rH~,) can be represented for any f i n  Jq~p(~), in terms of the Riemannian 
density determined by g, 

= fp~(x ,  y)f(y)ldet g(y)[,/2 @1 A. " �9 dy 4 (2.17) (exp( rHv)f  )(x) 

Due to the unitary equivalence of H~, and D v, what we shall do is 
determine p ~ in terms of a Wiener process generated by the Hamiltonian 
D~, which, we stress, possesses the usual form of a Laplacian plus perturb- 
ative term so we can apply to it the usual Feynman-Kac formula, but, as 
we shall see, on the coordinate functions of the general process 4. 

Let us do this for the case in which g is the Euclidean metric, so that 
Ag is the wave operator on ~", so that in (2.13), o- is the identity matrix 
and B~ is the standard Wiener process W~ with transition density given by 
(2.24). 

Applying the Feynman-Kac formula (Friedlin, 1985; Durrett, 1984; 
Rapoport-Campod6nico and Tilli, 1987) we obtain 

(exp(rg~)f)(x)= ~(x)-lE,<,. exp - Vv,(~,) ds ~(~s)f(~s) ds (2.18) 

where W,- denotes Wiener measure on the coordinates ~(w) = w(r) of the 
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solution of the stochastic differential equation 

d~=dW~+dln ~t(~)  dr  (2.19) 

We define Px=Z~ . W~I~,  where ff~ denotes the smallest o--algebra for 
which the coordinate functions w(r) are measurable, and Z~, for each v > O, 
is defined by 

Efo Z~ = V ( x ) - l g ( ~ 0  exp - Vv(~s ) ds[~=y (2.20) 

Recalling that we assumed that d ln  V and Agg/g belong to l~oc(fL dx), then 
Z~ is a random variable, positive Vex a.s., and Ew(Z~)= 1. It follows that Px 
is a probability measure on (~#'(M), ~ ). Then, the diffusion process defined 
by 

B~= ~ -  d ln  V(~,) ds (2.21) 

is proved to be standard Brownian motion starting at x with respect to the 
measure Px, so that under this measure, the coordinate maps of the process 
~ are the unique solutions to the equation obtained upon differentiating 
(2.21), which is (2.19), and they behave like a Brownian motion plus the 
drift. This is the Girsanov or drift transformation produced by the unique 
transformation of probability given by Wx -, Px. 

Therefore, for all r > 0 and ~ starting at x, we have 

Ep~(f( ~)) = Ewe(f(~)Z~) (2.22) 

so that the transition density with respect to the Riemannian volume element 
is 

p~(x,y)=~(x)-'~(y)Ew,, exp - Vv,(~,)dsL~=y p~(x,y) (2.23) 

where p~ is the transition probability of the standard Brownian process, 

p~(x, y) = (2rrr) -2 exp( - Ix -y l2 /2 r )  (x, yeM) (2.24) 

Then, p ~(x, y) is the fundamental solution of the parabolic equation 

Op ~(x, y) 
- H~,(x)p ~(x, y) 

0r 

Under the assumption that M is compact, it can be proved that 
p~(x, y) converges when r goes to infinity, uniformly on x and y to ~t2(y), 
with an exponential uniform convergence on x. 
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We can extend the diffusion processes to R, by defining ~*(T) = ~ ( -r ) .  
We would obtain a relativistic extension of the osmotic processes defined by 
Nelson (1985). 

A final remark. We have built the chain of one-to-one correspondences 
by taking as the primitive point of view that of a gauge theory of the 
gravitational field, introduced by the conformal-Lorentz (-orthogonal) 
group, or its generalization to arbitrary dimension, for which the Weyl 
torsion 1-form has an (apparent) universality, as we showed in the consequ- 
ent constructions. 

Yet, when considering the field equations for such a gauge theory, and 
its relation to global invariants of the configuration spaces [which, in fact 
are very strongly linked with the asymptotic properties of p ~ for v ~ 0, the 
high-temperature limit of quantum statistical mechanics (Hurt, 1983)], the 
dimension equal to 4 is singled out among all others. This seems to indicate 
that if there is to be a description of quantum phenomena, taking as primitive 
a gauge theory of the gravitational field, the dimension of space-time must 
be 4 (Rapoport-Campod6nico, 1991), and consequently, the description of 
many degrees of freedom will be essentially relativistic. 

REFERENCES 

Albeverio, S., and H~egh-Krohn, R. (i979). Communications in Mathematical Physics, 68, 
95-12. 

Albeverio, S., H~egh-Krohn, R., and Streit, L. (1977). Journal of Mathematical Physics, 18, 
907-917. 

Aldrovandi, E., Dohrn, D., and Guerra, F. (1990). Journal of Mathematical Physics, 31, 639, 
and references therein. 

Azema, J., and Yor, M., eds. (1982). S~minaire de Probabilit~s 1980/81. Suppldment GbomOtrie 
Diff~rentielle, Springer-Verlag, Berlin. 

Blanchard, Ph., Combe, Ph., and Zheng, W. (1987). Mathematical and Physical Aspects of 
Stochastic Mechanics, Springer-Verlag, Berlin. 

Bohm, D. (1952). Physical Review, 85, 166. 
Carlen, E. (1984). Communications in Mathematical Physics, 94, 293. 
Carmona, R. (1979). In SOminaire de ProbabilitbsXIII, C. Dellacherie, P. Meyer, and M. Weil, 

eds., Springer-Verlag, New York, pp. 557-573. 
Cartan,'E., and Einstein, A. (1979). Lettres sur le Paralldlisme Absolu. The Einstein-Cartan 

Correspondence, R. Debeber, ed., Princeton University Press, Princeton, New Jersey, and 
Royal Academy of Sciences of Belgium. 

Durrett, R. (1984). Brownian Motion and Martingales in Analysis, Wadsworth, Belmont, 
California. 

Elworthy, K. D. (1982). Stochastic Differential Equations on Manifolds, Cambridge University 
Press, Cambridge. 

Ehresmann, C. (1950). Les connexions infinit6simales dans une fibre diff~rentiable, Colloque 
de topologie, Brussels. 

Friedlin, M. (1985). Functional Integration and Partial Differential Equations, Princeton 
University Press, Princeton, New Jersey. 



Conformal Riemann-Cartan-Weyl Gravitation 1515 

Fukushima, M. (1980). Dirichlet Forms and Markov Processes, North-Holland, Amsterdam, 
and Kodansha, Tokyo. 

Fulton, T., Rohrlich, F., and Witten, L. (1962). Review of Modern Physics, 34, 442. 
Glimm, J., and Jaffe, A. (1987). Quantum Physics, 2nd ed., Springer-Verlag, New York. 
Guillemin, V., and Sternberg, S. (1984). Symplectic Techniques in Phys&s, Cambridge 

University Press, Cambridge. 
Hehl, F. (1980). In Spin, Torsion, Rotations and Supergravity, P. Bergmann and V. de Sabbata, 

eds., Plenum Press, New York, and references therein. 
Hehl, F., et al. (1976). Review of Modern Physics, 48, 3. 
Hurt, N. (1983). Geometric Quantization in Action; Applications of Harmonic Analysis to 

Quantum Statistical Mechanics, Reidel, Boston. 
Ikeda, N., and Watanabe, S. (1981). Stochastic Differential Equations and Diffusion Processes, 

North-Holland, Amsterdam, and Kodansha, Tokyo. 
Katanaev, M. O., and Volovich, I. V. (1990). Annals of Physics, 138, 1-32. 
Kibble, T. W. B. (1961). Journal of Mathematical Physics, 2, 212. 
Meyer, P., and Zheng, W. (1985). In Seminar of Probability XIX 1983/1984, J. Azema and 

M. Yor, eds., Springer-Verlag, Heidelberg, p. 12. 
Nelson, E. (1967). The Dynamical Theories of Brownian Motion, Princeton University Press, 

Princeton, New Jersey. 
Nelson, E. (1985). Quantum Fluctuations, Princeton University Press, Princeton, New Jersey. 
Rapoport-Campodrnico, D. L. (1991). In preparation. 
Rapoport-Campodrnico, D. L., and Sternberg, S. (1984a). Nuovo Cimento Lettere, 80A, 371. 
Rapoport-Campod6nico, D. L., and Sternberg, S. (1984b). Annals of Physics, 158, 447. 
Rapoport-Campodrnico, D. L., and Tilli, M. (1987). Hadronic Journal, 10(1), 25. 
Sciama, D. W. (1962). Review of Modern Physics, 36, 463, 1103. 
Simon, B. (1991). Quantum Mechanics for Hamiltonians Defined as Quadratic Forms, Princeton 

University Press, Princeton, New Jersey. 
Souriau, J. M. (1970). Structures des Syst~mes Dynamiques, Dunod, Paris. 
Sternberg, S. (1977). In Differential Geometric Methods in Mathematical Physics, Springer- 

Verlag, New York, p. 1. 
Sternberg, S., and Ungar, T. (1978). Hadronic Journal, 1, 33. 
Williams, D. (1981). Stochastic Integrals, Proceedings of the London Mathematical Society 

Durham Symposium 1980, LNM 851, Springer-Verlag, Berlin. 


